Jellyfish Energy Efficiency

I have been doing some readings about jellyfish which several mechanical systems are inspired from. A very interesting point about them was discovered by Christian Sommer, a German marine-biology student who collected  a species known as Turritopsis dohrnii and kept his hydrozoans in petri dishes. After several days he noticed that his Turritopsis dohrnii refused to die and appeared to age in reverse, growing younger and younger until it reached its earliest stage of development, at which point it began its life cycle anew. But our focus about jellyfish is the claim that they may be the most energy-efficient animals in the world. Marine Biological Laboratory in Woods Hole, Massachusetts discovered that jellyfish swim using a dual-propulsion system that involves two vortices. As the first vortex pinches off, a second vortex forms, spinning in the opposite direction . When the animal relaxes its muscles and opens its bell, the stopping vortex moves up underneath the jellyfish, giving it a secondary push.

This is system that is developed to calculate the efficiency of their swim. To summarize they move maximum with minimum enery thanks to their structural features. By considering their move would work not only in water but also in the air, these findings made me think this performative feature can be implemented into buildings. The first glimpse into my mind was that, it could turn out to be an efficient way to use the the wind. It is all brainstorming. This is the moment that i wish i was also a scientist. So i started to work on a digital model by using the proportions of moon jellyfish since it is the most simple species. The definition has a lot to work on, but besides further reading, i had to get started to build it somehow to understand it better. aaaa2
P.s. There are bionic jellyfishes has already produced by researchers to use underwater researches with propulsion principle.

(Figure1) aa3


Advanced Design and Digital Architecture // The Master Book // Gizem Akgün

I completed my book “Advanced Design and Digital Architecture” few months ago.  It contains the investigations, experiments and the findings that has been made in the progress of two modules that the master study is formed from, both focused on different approaches in design. I organized the index and the chapters to explain the philosophy clearly, to describe how each step links to the others. Each step provides a raw material to process for the next step, and the material evolves in each step to reach the emergent system that is able to answer for complex conditions.

With the order that I have attended to master course the first module which is called CODELAB is a process of understanding the principles of computer aided design and architecture, philosophy of parametric architecture and studying with advanced software. Second module which is called BIODELAB focuses on natural forms and geometries, biomimicry and translation of biological data to architecture by using complex parameters with advanced software.

Here there are few pages of hard copy of it.

Ross Lovegrove (Captain Organic)

Now here i will be talking about “captain organic” little bit.


As it is written in his bio in “TED Ross Lovegrove embraces nature as the inspiration for his “fat-free” design. Each object he creates — be it bottle, chair, staircase or car — is reduced to its essential elements. His pieces offer minimal forms of maximum beauty.” He is an industrial designer that is thrilled by nature as much as all my inspirational teachers.

One of the points that draw my attention and investigate more was the polymer furnitures that are made by injecting air in the material.

Another issue that he emphasizes in nature everything has holes that makes the structures lighter and prevents use of unnecessary amount of material. He translates this information to the furnitures as you can see the chair on top.


Reading: “Out Of Control: The New Biology of the Machines, Social Systems, & the Economic World Kevin Kelly”

The book has published in 1994. It includes many gems for architects that can be easily translated as perfect systems. Here is some of parts of the book that i find salient, stunning and can contribute those who work in the field of Biomimitic Architecture.

Some sentences have been cutted, and some parts are the summaries of some sections of the book.

This book is about the marriage of the “born (all that is nature)” and the “made (all that is humanly constructed)”. By extracting the logical principle of both life and the machines and applying each to the task of building extremely complex systems, engineers are conjuring up the contraptions that are both made and alive.

The realm of the “born” and the realm of the “made” are becoming one. Machines are becoming biological and the biological is becoming engineered. For the world of our own making has become so complicated that we must turn to the world of the born to understand how to manage it. That is, the more mechanical we make our fabricated environment, the more biological it will eventually have to be if it is to work at all times. Our technological future is headed toward a neo-biological civilization.
First we took nature’s materials as food, fibers and shelter. Then we learned how to extract raw materials from its biosphere to create our own new synthetic materials. Now we have reached to a point that we need to take its logic. Clockwork logic (the logic of the machines) will only build simple contraptions. Truly complex systems such as a cell, a meadow, an economy or a brain (natural or artificial) require a rigorous non-technological logic. Today’s science and the knowledge clearly show us, there is no logic except “bio-logic” that can assemble a thinking/self-organizing device or even a workable system of any magnitude. At this point, a question emerges for further development. What should we call that common soul between the organic communities we know as organisms and ecologies, and their manufactured parts of robots, economies and computer circuits?

The meanings of “mechanical” and “life” are both stretching until all complicated things can be perceived as machines and all self-sustaining machines can be perceived as alive. Yet it’s a mystery how much life can be transferred. So far, some of the traits of the living that have successfully been transported to mechanical systems are: self-replication, limited self-repair, self-governance, mild evaluation and partial learning. When the union of the born and the made is complete, our fabrications will learn, adapt, heal themselves and evolve. In this sense, it is also similar to individual development of human in his life path.
Basically we seek for mechanical systems to react and to change once we translate the traits of the living and apply them. The change we look for, can be structured. This is what large complex systems do: they coordinate change. When extremely large systems are built up out of complicated systems, then each system begins to influence and ultimately change the organizations of the other systems. That is if the rules of the game are composed from the bottom up, then it is likely that interacting forces at the bottom level will alter the rules of the game as it progresses. Over the time of the rules for change get changed themselves.

In the light of this knowledge, we can reach to an understanding as; the evolution is about how an entity is changed over time, deeper evolution is about how the rules for changing entities change over time.

At that point it can be questioned that even though a building facilitates structures that produces energy such as solar panels, wind panels, if it is a result of heavy fabrication concludes so much energy consumption and waste materials that cannot be a part of life cycles, would it be an efficient building? Smart systems should be result of a strong and simple concept and it should contain a balance between input energy/material and output energy/material.

10 Strategy of Efficient Design Inherited from Animals

Baya Weaver / BayaweberGreen Tree Ant / Waeaver Ant / WeberameiseAnimal Architecture is a branch biomimetic architecture that is focused on the animal-made shelters. Investigation of this area is focused on how shelters emerge, how they serve for the necessities of the animals and the geometry-material combination that emerges and provides stiffness or flexibility that is needed. Due to the investigations, many clues are being discovered to develop more efficient design with less material and energy. This can be observed much clearly especially by observing the animals which live as colonies. Emergence and lack of planning gives so much flexibility to their systems and anything can be integrated anytime that is needed. Morton Wheeler, a natural philosopher, claimed that an insect colony was not merely the analog of an organism; it is indeed an organism, in every scientific sense of the word. He wrote: “Like a cell of the person, it behaves a unitary whole, maintaining its identity in space, resisting dissolution … neither a thing nor a concept, but a continual flux or a process.” Only by observing few animal colonies, very simple but useful strategies can be extracted to design more efficient. Bunch of principles we extract from animal that we can evaluate the efficiency of our design.

1. Reuse: Animals tend to use the shelters of others. The shelter can be abandoned, temporarily empty.
2. Recycle: There are bunch of animal that use the product that they produce. Spiders eat their nets when it is not needed, or when a change is needed in the net.
3. Use “0 km” Material: Birds use spiders’ nets to sew the leaves for building their shelters.
4. Solve Through Geometry: Variable animal species has variable solutions for ventilation, drainage, temperature and structure stiffness is being managed by just creating some intelligent geometries.
5. Adapt: In order to get more profit from environment many animal species adapt themselves to the conditions. For an example, if there are insects that doesn’t able to fly really well in the environment, spiders build their nets with less dense strings and produce a net that covers a bigger area, this way it catches more insects.
6. Innovation: In very different conditions animals have found innovative ways to adapt to the changes or lack of materials. Bees has been observed as they used paper as the material for building the honey comb, some bird breeds has been observed as they developed some ways to deform the soft rocks to use them as their shelter.
7. Specialization: The animals that live as colonies that have sophisticated system of specialization on jobs. Clear image of this fact can be highly observed on the bees and on the ants.
8. Save Energy: Despite of human, animals in the nature untiringly behave as they are the part of cycle of life. The energy they consume transforms as a material that it will use or some other element of the cycle will use. As an example, if bugs need new armors, they become smaller by size once they produce the armor. So the energy that is being consumed is from his body, resulting a protection for itself, without getting any energy from the environment.
9. Build With Their Body: Some animal species are tend to use their own body and their own production to build for hunting, for shelter or fulfill the other needs.
10. Copy: Copying is another smart feature that is used by animals, once they see a way that functions properly for meeting their necessities; they learn it and they easily copy it.

The Lightweight Principle // Frei Otto

A section in my book that i present my study about the lightweight principle of Frei Otto.